
Applications & Tools

Answers for industry.

Programming Guideline for
S7-1200/S7-1500

STEP 7 (TIA Portal)

Background and system description October 2013

Warranty and Liability

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 2

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete
regarding the circuits shown, equipping and any eventuality. The application
examples do not represent customer-specific solutions. You are responsible for
ensuring that the described products are used correctly. These Application
Examples do not relieve you of your responsibility to use safe practices in
application, installation, operation and maintenance. When using these
application examples, you recognize that we cannot be made liable for any
damage/claims beyond the liability clause described. We reserve the right to
make changes to these Application Examples at any time and without prior
notice. If there are any deviations between the recommendations provided in this
application example and other Siemens publications – e.g. catalogs – the
contents of the other documents have priority.

We do not accept any liability for the information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this application example will be excluded. Such an exclusion will not
apply in the case of mandatory liability, e.g. under the German Product Liability Act
(“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life, body
or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.
Any form of duplication or distribution of these application examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Caution
The functions and solutions described in this entry are mainly limited to the
realization of the automation task. Please furthermore take into account that
corresponding protective measures have to be taken in the context of industrial
security when connecting your equipment to other parts of the plant, the enterprise
network or the Internet. Further information can be found under the Entry ID
50203404.
http://support.automation.siemens.com/WW/view/en/50203404

Siemens Industry Online Support
This document is an article from the Siemens Industry Online Support. The
following link takes you directly to the download page of this document:
http://support.automation.siemens.com/WW/view/en/81318674

http://support.automation.siemens.com/WW/view/en/50203404
http://support.automation.siemens.com/WW/view/en/81318674

Table of Contents

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 3

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Table of Contents
Warranty and Liability ... 2

1 Preface .. 5

2 S7-1200/1500 Innovations ... 6

2.1 Introduction ... 6
2.2 Programming languages .. 7
2.3 Optimized machine code .. 8
2.4 Block creation ... 8
2.5 Optimized blocks .. 9
2.5.1 S7-1200: Setup of optimized blocks ... 10
2.5.2 S7-1500: Setup of optimized blocks ... 10
2.5.3 Best possible data storage in the processor on S7-1500 11
2.6 Block sizes ... 14
2.7 New data types for S7-1200/1500 .. 15
2.7.1 Elementary data types .. 15
2.7.2 Date_Time_Long data type .. 15
2.7.3 VARIANT data type .. 16
2.8 New CALCULATE instruction .. 17
2.9 Symbolic and comments .. 17
2.10 System constants ... 19
2.11 Internal reference ID for controller and HMI tags 20
2.12 STOP mode in the event of errors ... 21

3 General Programming ... 23

3.1 Operating system and user program .. 23
3.2 Program blocks .. 23
3.2.1 Organization blocks (OB) ... 24
3.2.2 Functions (FC) .. 26
3.2.3 Function blocks (FB) .. 28
3.2.4 Instance data block .. 28
3.2.5 Multi-instances ... 29
3.2.6 Global data blocks (DB) ... 31
3.2.7 Downloading without reinitialization ... 32
3.2.8 Reusability of blocks ... 35
3.3 Block interface types .. 36
3.3.1 Call-by-value with In interface type .. 36
3.3.2 Call-by-reference with InOut interface type .. 37
3.4 Storage concept ... 37
3.4.1 Block interfaces as data exchange .. 37
3.4.2 Global memory ... 38
3.4.3 Local memory ... 39
3.4.4 Access speed of memory areas ... 40
3.5 Retentivity ... 41
3.6 Symbolic addressing .. 42
3.6.1 Symbolic instead of absolute addressing ... 42
3.6.2 ARRAY data type and indirect field accesses 44
3.6.3 STRUCT data type and PLC data types .. 46
3.6.4 Slice access ... 47
3.7 Libraries .. 48
3.7.1 Types of libraries and library elements .. 48
3.7.2 Type concept .. 50
3.7.3 Differences for typifiable objects for controller and HMI 50
3.7.4 Versioning of a block .. 51
3.8 Process interrupts .. 56
3.9 Other performance recommendations ... 58

Table of Contents

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 4

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.10 SCL programming language: Tips and tricks 59
3.10.1 Using call templates ... 59
3.10.2 What instruction parameters are mandatory? 60
3.10.3 Drag & drop with entire tag names ... 60
3.10.4 Efficiently inserting CASE instruction ... 61
3.10.5 No manipulation of loop counters for FOR loop 61
3.10.6 FOR loop backwards .. 62
3.10.7 Simple creating of instances for calls ... 62
3.10.8 Handling of time tags .. 62

4 Hardware-Independent Programming ... 64

4.1 Data types of S7-300/400 and S7-1200/1500 64
4.2 No bit memory but global data blocks .. 65
4.3 Programming of "clock bits" ... 66

5 The Most Important Recommendations .. 68

6 Related Literature .. 69

7 History... 69

1 Preface

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 5

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

1 Preface
Aims for the development of the new SIMATIC control generation

 An engineering framework for all automation components (controller, HMI,
drives, etc.)

 Uniform programming
 Increased performance
 Full set of commands for every language
 Fully symbolic program generation
 Data handling even without pointer
 Reusability of created blocks

Aim of the guideline
The new control generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture, and together with the TIA Portal offers new and efficient
options of programming and configuration. It is no longer the resources of the
controller (e.g. data storage in the memory) that are paramount but the actual
automation solution.
This document gives you many recommendations and tips on the optimal
programming of S7-1200/1500 controllers. Some differences in the system
architecture of the S7-300/400, as well as the thus connected new programming
options are explained in an easy to understand way. This helps you to create a
standardized and optimal programming of your automation solutions.
The examples described can be universally used for the controllers S7-1200 and
S7-1500.

Core content of this programming guideline
The following key issues on the TIA Portal are dealt with in this document:
 S7-1200/1500 innovations

– Programming languages
– Optimized blocks

 Recommendation on general programming
– Operating system and user program
– Storage concept
– Symbolic addressing
– Libraries

 Recommendations on hardware-independent programming

Advantages and benefits
Numerous advantages arise by applying these recommendations and tips:
 Powerful user program
 Clear program structures
 Intuitive and effective programming solutions

2 S7-1200/1500 Innovations
2.1 Introduction

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 6

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

2 S7-1200/1500 Innovations
2.1 Introduction

In general, the programming of SIMATIC controllers has stayed the same from S7-
300/400 to S7-1500. There are the familiar programming languages such as LAD,
FBD, STL, SCL or graph and blocks such as organization blocks (OBs), function
blocks (FBs), functions (FCs) or data blocks (DBs). I.e. already created S7-300/400
programs can be implemented on S7-1500 and already created LAD, FBD and
SCL programs on S7-1200 controller without any problems.
Additionally, there are many innovations that make programming easier for you and
which allow a powerful and storage-saving code.
We not only recommend implementing programs that are implemented for S7-
1200/1500 controllers 1:1 but also to check them for the new options and where
applicable, to use them. The additional effort is often limited and you get a program
code that is, for example,
• optimal in terms of memory and runtime for the newer CPUs
• easier to understand,
• and easier to maintain.

Terms
Some terms have changed in order to make better handling with the TIA Portal
possible.

Figure 2-1: New terms in the TIA Portal

Symbol table PLC tags

STEP 7 V5.x STEP 7 (TIA Portal)

Tag table Monitoring table

UDT PLC data types

2 S7-1200/1500 Innovations
2.2 Programming languages

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 7

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Note You will find further information in the following entries:

What entries are available on the internet for the migration to STEP 7 (TIA
Portal) and WinCC (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/58879602

What prerequisites have to be fulfilled in order to migrate a STEP 7 V5.x project
into STEP 7 Professional (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/62101406

PLC migration for S7-1500 with STEP 7 (TIA Portal) V12
http://support.automation.siemens.com/WW/view/en/67858106

Programming recommendations for S7-1200 and S7-1500 with STEP 7 (TIA
Portal) V12
http://support.automation.siemens.com/WW/view/en/67582299

Why is it not possible to mix register passing and explicit parameter transfer with
the S7-1500 in STEP 7 (TIA Portal) V12?
Among others, the migration of STL programs to S7-1500 is described in this
entry.
http://support.automation.siemens.com/WW/view/en/67655405

2.2 Programming languages

For the programming of a user program, various different programming languages
are available. Each language has its own advantages, which can be variably used,
depending on the application. Every block in the user program can therefore be
created in any programming language.
 Contact plan (KOP or LAD)
 Function plan (FUP or FBD)
 Structured Control Language (SCL)
 Graph, only S7-1500, planned for S7-1200
 Instruction list (AWL or STL), only S7-1500

Note You will find further information in the following entries:

What has to be observed when migrating a S7-SCL program in STEP 7 (TIA
Portal)?
http://support.automation.siemens.com/WW/view/en/59784006

What instructions cannot be used in STEP 7 V11 in an SCL program?
http://support.automation.siemens.com/WW/view/en/58002710

How can the constants be defined under STEP 7 V11 in a S7-SCL program?
http://support.automation.siemens.com/WW/view/en/58065411

http://support.automation.siemens.com/WW/view/en/58879602
http://support.automation.siemens.com/WW/view/en/62101406
http://support.automation.siemens.com/WW/view/en/67858106
http://support.automation.siemens.com/WW/view/en/67582299
http://support.automation.siemens.com/WW/view/en/67655405
http://support.automation.siemens.com/WW/view/en/59784006
http://support.automation.siemens.com/WW/view/en/58002710
http://support.automation.siemens.com/WW/view/en/58065411

2 S7-1200/1500 Innovations
2.3 Optimized machine code

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 8

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

2.3 Optimized machine code

TIA Portal and S7-1200/1500 allow an optimized runtime performance in any
programming language. All languages are compiled the same, directly into the
machine code.

Advantages
 All programming languages have the same high performance (with the same

access types)
 No reduced performance through additional compiling with an intermediate

step via STL

Properties
The following figure displays the difference of the compilation of S7 programs into
machine code.
Figure 2-2: Machine code generation with S7-300/400 and S7-1200/1500

Maschine code
S7-300/400/WinAC

S7-300
S7-400

WinACS7-300/400/WinAC

SCL
LAD
FBD

STL

S7-1200/1500

Maschine code
S7-1200/1500

LAD
FBDSCL STL

(only S7-1500)

S7-1500

S7-1200

 For S7-300/400 controllers LAD and FDP programs are first of all compiled in
STL before the machine code is created.

 For S7-1200/1500 controllers all programming languages are directly compiled
into machine code.

2.4 Block creation

All blocks such as OBs, FBs and FCs can be programmed directly in the desired
programming language. Thus no source has to be created for SCL programming.
You only select the block, and SCL as programming language. The block can then
be directly programmed.

2 S7-1200/1500 Innovations
2.5 Optimized blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 9

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 2-3: “Add new block” dialog

2.5 Optimized blocks
S7-1200/1500 controllers have optimized data storage. In optimized blocks all data
types are automatically sorted. The sorting ensures that the data gaps between the
data types are reduced to a minimum and that they are stored access-optimized for
the processor.
Non-optimized blocks only exist for reasons of compatibility in S7-1200/1500.

Advantages
 The access is always as fast as possible, since the file storage is optimized by

the system and is independent of the declaration.
 No danger of inconsistencies due to faulty, absolute accesses since the access

is generally symbolic.
 Declaration changes do not lead to access errors since, for example, HMI

accesses are performed symbolically.
 Individual tags can be specifically defined as “retain”.
 No settings in the instance data block are necessary. Everything is set in the

assigned FB (e.g. retentivity).
 Memory reserves in the data block make it possible to change the actual

values without any loss (see chapter 3.2.7 Downloading without reinitialization)

2 S7-1200/1500 Innovations
2.5 Optimized blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 10

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

2.5.1 S7-1200: Setup of optimized blocks

Figure 2-4: Optimized block of S7-1200

B
y
t
e
s

Bits
0 1 2 3 4 5 6 7

W1

W2

B1

X1 X2 X3 X4

B
y
t
e
s

Bits
0 1 2 3 4 5 6 7

0 X1

1 B1

2 X2 X3

3

4
W1

5

6 X3

7

8
W2

9

OptimizedStandard

Standard block Optimized block

Properties

 No data gaps are formed since larger data types are located at the beginning
of the block and smaller ones at the end.

 Only the symbolic access exists for optimized blocks.

2.5.2 S7-1500: Setup of optimized blocks

Figure 2-5: Optimized block of S7-1500

B
y
t
e
s

Bits
0 1 2 3 4 5 6 7

W1

W2

B1

X1

X2

X3

X4

B
y
t
e
s

Bits
0 1 2 3 4 5 6 7

0 X1

1 B1

2 X2 X3

3

4
W1

5

6 X4

7

8
W2

9

Standard block Optimized block
Standard

Reserve

Optimized

Properties
 No data gaps are formed since larger data types are located at the beginning

of the block and smaller ones at the end.

2 S7-1200/1500 Innovations
2.5 Optimized blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 11

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

 Fast access due the best possible storage in the processor (All data is stored
in a way so that the processor of the S7-1500 can directly read or write all data
with just one machine command).

 Boolean tags are stored as byte for faster access. The controller therefore
does not have to mask the access.

 Optimized blocks have a memory reserves for reloading in running operation
(see chapter 3.2.7 Downloading without reinitialization).

 Only the symbolic access exists for optimized blocks.

2.5.3 Best possible data storage in the processor on S7-1500

For reasons of compatibility to the first SIMATIC controllers the “Big-Endian”
principle of data storage was adopted in the S7-300/400 controllers.
The new S7-1500 controller generation always accesses 4 byte (32 bit) in “Little-
Endian” sequence due to the changed processor architecture. This results in the
following system-specific properties.
Figure 2-6: Data access of a S7-1500 controller

B
y
t
e
s

Bits
0 1 2 3 4 5 6 7

0 BYTE
1

2

REAL
3

4

5

6 X X

7

8
WORD

9

B
y
t
e
s

Bits
0 1 2 3 4 5 6 7

REAL

WORD

BYTE
X

X

Standard block
max. 64kB

Optimized block
max. 16MB

Standard

Reserve

1

0 Little Endian

Co
py

in
g

re
qu

ire
s

tim
e

du
e

to
re

so
rt

in
g!

Optimized

0

1 Big Endian

0

1

2

3 Big Endian

Conversion for
processor access:

Big Little Endian

Best possible processor
data storage:

No conversion
required.

3

2

1

0 Little Endian

1

2

1

2

Table 2-1: Data access of a S7-1500 controller

Standard block Optimized block

1. In the event of an unfavorable offset,
the controller needs 2x16 bit accesses
in order to be able to read a 4 byte
value (e.g. REAL value).
In addition the bytes have to be
changed.

The controller stores the tags, access
optimized. An access is performed with
32 bit (REAL).
A changing of the bytes is not
necessary.

2. The complete byte is read and masked
per bit access.
The complete byte is blocked for any
other access.

Each bit is assigned a byte.
When accessing, the controller does not
have to mask the byte.

3. Maximum block size is 64kB. Maximum block size can be up to
16MB.

2 S7-1200/1500 Innovations
2.5 Optimized blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 12

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Recommendation

 Always only use optimized blocks.
– They do not require absolute addressing and can always be addressed

with symbolic data (object related). Indirect addressing is also possible with
symbolic data (see chapter 3.6.2 ARRAY data type and indirect field
accesses).

– The processing of optimized blocks in the controller is much faster than
with standard blocks.

 Avoid the copying of data between optimized and non-optimized blocks. The
required conversion between source and destination format requires high
processing time.

 Avoid the assignment of optimized to non-optimized tags. Here, the storage
formats are also converted.

Example: Setting optimized block access
The optimized block accesses for all newly created blocks for S7-1200/1500 is
enabled by default. Block access can be set for OBs, FBs and global DBs. For
instance DBs, the setting depends on the respective FB.
The block access is not reset automatically when a block is migrated from a
S7-300/400 controller to a S7-1200/1500. You can change the block access later
on to “optimized block access”. You need to recompile the program after changing
the block access. If you change the FBs to “optimized block access”, the assigned
instance data blocks are automatically updated.
Follow the instructions below, in order to set the optimized block access.
Table 2-2: Setting optimized block access

Step Instruction

1. Click the “Maximizes/minimizes the Overview” button in the project navigation.

2. Navigate to “Program blocks“.

2 S7-1200/1500 Innovations
2.5 Optimized blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 13

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Step Instruction

3. This is where you see all blocks in the program and whether they are optimized
or not. In this overview the “Optimized block access” status can be conveniently
changed.

Note: Instance data blocks (here “Function_block_1_DB”) inherit the “optimized”
status from the respective FB. This is why the “optimized” setting can only be
changed on the FB. After the compilation of the project the DB accepts the
status depending on the respective FB.

Display of optimized and non-optimized blocks in the TIA Portal
In the two following figures the differences between an optimized and a non-
optimized instance DB can be seen.
For a global DB there are the same differences.
Figure 2-7: Optimized data block (without offset)

Figure 2-8: Non-optimized data blocks (with offset)

Table 2-3: Difference: optimized and non-optimized data block

Optimized data block Non-optimized data block

Optimized data blocks do not have an
“offset” of the tags since the addressing is
only symbolic.

Non-optimized blocks have an “offset” and
can be addressed directly.

In optimized blocks every tag can be
declared with “Retain”.

However, in non-optimized blocks only all
or no tags can be declared with “Retain”.

2 S7-1200/1500 Innovations
2.6 Block sizes

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 14

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

If you want to declare a tag in a global DB with retain, you can set this directly in
the global DB. No data is retentive by default.
If you want to declare a tag in a global DB with retain, you can set this directly in
the global DB.

Access types for optimized and non-optimized blocks
The following table displays all access types to blocks.
Table 2-4: Access types

Access type Optimized block Non-optimized
block

Symbolic

Indexed (fields)

Slice accesses

AT instruction
(Alternatively: slice access)

Direct absolute
(Alternatively: ARRAY with

index)
Indirect absolute (pointer)

(Alternatively: VARIANT /
ARRAY with index)

Downloading without
reinitialization

Note You will find further information in the following entry:

What properties do you have to pay attention to in STEP 7 V11 for the
instructions "READ_DBL" and "WRIT_DBL", when you are using DBs with
optimized access?
http://support.automation.siemens.com/WW/view/en/51434748

2.6 Block sizes
For S7-1200/1500 controllers the maximum size of blocks was significantly
increased in the main memory.
Table 2-5: Block sizes

Max. size and number
(regardless of the main memory

size)

S7 -300/400 S7-1200 S7-1500

DB Max. size 64 kB 64 kB 64 kB (non-optimized)
16 MB (optimized)

Max. number 16.000 59.999 59.999

FC/FB Max. size 64 kB 64 kB 512 kB

Max. number 7.999 65.535 65.535

FC / FB / DB Max. number 4.096 (CPU319)
6.000 (CPU412)

1.024 6.000 (CPU1516)

http://support.automation.siemens.com/WW/view/en/51434748

2 S7-1200/1500 Innovations
2.7 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 15

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Recommendation

 Use the DBs for S7-1500 controllers as data container of very large data
volumes.

 Data volumes of > 64 kB can be stored in an optimized DB (max. size 16 MB)
with S7-1500 controllers.

2.7 New data types for S7-1200/1500

S7-1200/1500 controllers support new data types in order to make programming
more convenient. With the new 64 bit data types considerably larger and more
accurate values can be used.

Note You will find further information in the following entry:

How is the conversion of data types performed in the TIA Portal for the
S7-1200/1500?
http://support.automation.siemens.com/WW/view/en/60546567

2.7.1 Elementary data types

Table 2-6: Integer data types

Type Size Value range

USint 8 bit 0 .. 255
SInt 8 bit -128 .. 127
UInt 16 bit 0 .. 65535

UDInt 32 bit 0 .. 4.3 million
ULInt* 64 bit 0 .. 18.4 billion
LInt* 64 bit -9.2 billion .. 9.2 billion

* only for S7-1500

Table 2-7: Floating-point decimal data types

Type Size Value range

Real 32 bit (1 bit signs, 8 bit exponent, 23 bit mantissa),
8 digits

-3.40e+38 .. 3.40e+38

LReal 64 bit (1 bit signs, 11 bit exponent, 23 bit
mantissa), 16 digits

-1.79e+308 .. 1.79e+308

2.7.2 Date_Time_Long data type

Table 2-8: Structure of DTL (Date_Time_Long)

Year Month Day Weekday Hour Minute Second Nanosecond

DTL always reads the current system time. Access to the individual values is
through the symbolic names (e.g. My_Timestamp.Hour)

Advantages

 All partial areas (e.g. Year, Month, …) can be addressed symbolically.

http://support.automation.siemens.com/WW/view/en/60546567

2 S7-1200/1500 Innovations
2.7 New data types for S7-1200/1500

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 16

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Recommendation
Use the new DTL data type instead of LDT and address symbolically.

2.7.3 VARIANT data type

A parameter of the VARIANT type is a pointer that can point to tags of different
data types. In contrast to the ANY pointer the VARIANT is a pointer with type test.
I.e. the target structure and source structure are checked at runtime and have to be
identical.
VARIANT is used, for example, as input for communication blocks (TSEND_C).
Figure 2-9: VARIANT data type as input parameter for the TSEND_C instruction

VARIANT
In this case includes the check of the

structure TCON_IP_v4

Advantages

 Integrated type test
 Symbolic addressing for optimized blocks

Recommendation
 Use the VARIANT data type instead of the ANY pointer. Due to the integrated

type test, errors are detected early on and due to the symbolic addressing the
program code can be easily interpreted.

 As another alternative you can use the indexed ARRAYs for the ANY pointer
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Note You will find further information in the following entry:

How can memory areas be copied in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/59886704

How do you program the "VARIANT" data type for indirect addressing for the S7-
1200 in STEP 7 (TIA Portal) V11?
http://support.automation.siemens.com/WW/view/en/42603286

http://support.automation.siemens.com/WW/view/en/59886704
http://support.automation.siemens.com/WW/view/en/42603286

2 S7-1200/1500 Innovations
2.8 New CALCULATE instruction

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 17

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

2.8 New CALCULATE instruction

With the CALCULATE instruction you can carry out mathematical calculations (e.g.
(IN1 + IN2) * IN3) that are independent from the data type. The mathematical
formula is programmed in the formula editor of the instruction.
Figure 2-10: CALCULATE instruction with formula editor

Note For more information refer to the Online Help of the TIA Portal with the
“CALCULATE” instruction.

Advantages

 A mathematical formula only needs one instruction
 Time saving due to simple configuration
 In SCL mathematical formula can be programmed even more clearly and

efficiently

Properties

 Supports bit sequences, integers, floating-point numbers
 Supports numerous mathematical functions (all basic arithmetic operations,

trigonometric functions, rounding, logarithm, etc.)
 Supports any number of inputs

Recommendation
 Always use the CALCULATE instruction for mathematical calculations instead

of many calls of instructions, such as, e.g. ADD, SUB, etc.

2.9 Symbolic and comments

Advantages
You can make the code easy to understand and readable for your colleagues with
the use of symbolic names and comments in your program.
The complete symbolic is saved together with the program code during the
download to the controller and allows fast maintenance of the plant when no offline
project is at hand.

2 S7-1200/1500 Innovations
2.9 Symbolic and comments

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 18

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Recommendation

 Use the comments in the programs in order to improve readability.
 Design the program code in a way so that other users can understand the

program straight away.
In the following example you can see the extensive options for commenting the
program editors.

Example
In the following figure you can see the options for commenting in the LAD editor
(same functionality in FDB).
Figure 2-11: Commenting in the user program (LAD)

4

3

2
1

The following comments are possible:
1. Block comment
2. Network title comment
3. Network comment
4. Comment on instructions, blocks and functions (open, close, etc.)

In the programming languages SCL and STL, it can be commented with // in every
row.

Example
Filling level:= Radius * Radius * PI * height; //
calculation of the filling level for medium tank

2 S7-1200/1500 Innovations
2.10 System constants

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 19

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

2.10 System constants

For S7-300/400 controllers the identification of hardware and software components
is performed by logic address or diagnostic addresses.
For S7-1200/1500 the identification is by system constants. All hardware and
software components (e.g. interfaces, modules, OBs, ...) of the S7-1200/1500
controllers have their own system constants. The system constants are
automatically created during the setup of the device configuration for the central
and distributed I/O.

Advantages

 You can address via module names instead of hardware identification.

Recommendation
 Assign function-related module names in order to identify them easily during

programming.

Example
In the following example you can see how system constants are used in the user
program.
Figure 2-12: “System constants” in the user program

1

2

3

1. System constants of a controller can be found in the “PLC tags –
Default tag table” folder.

2. The system constants are in a separate list in the “Default tag table”.
3. In this example the symbolic name “Robot_arm_left” was assigned for a DI

module.
You can also find the module under this name in the system constant table.
In the user program “Robot_arm_left” is interconnected with the “GET_DIAG”
diagnostic block.

2 S7-1200/1500 Innovations
2.11 Internal reference ID for controller and HMI tags

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 20

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Note You will find further information in the following entry:

What meaning do the system constants have for the S7-1200/1500 in STEP 7
(TIA Portal)?
http://support.automation.siemens.com/WW/view/en/78782836

2.11 Internal reference ID for controller and HMI tags
STEP 7, WinCC, Startdrive, Safety and others integrate into the joint data base of
the TIA Portal engineering framework. Changes of data are automatically accepted
in all the locations in the user program, independent from whether this happens in
a controller, a panel or a drive. Therefore no data inconsistencies can occur.
If you create a tag, the TIA Portal automatically creates a unique reference ID. The
reference ID cannot be viewed or programmed by you. This procedure is internal
referencing. When changing tags (address), the reference ID remains unchanged.

Advantages
 You can rewire tags without changing internal relations. The communication

between controller, HMI and drive also remains unchanged.
 The volume of the transferred data and the usage of main memory is

independent from the length of the symbolic tag names.
 The length of the symbolic name does not have an influence on the

communication load between controller and HMI.

Properties
If you change addresses of PLC tags, you only have to reload the controller. It is
not necessary to reload the HMI devices, since internally, the system addresses
with the reference IDs (see Figure 2-13: Changing address or adding row).

Figure 2-13: Changing address or adding row

Changing address
& PLC

Adding row
& PLC

PLC Tags

DB Elements

Motor_1 Motor_1%I0.0 %I2.0

In the figure below the internal reference to the data is displayed schematically.

http://support.automation.siemens.com/WW/view/en/78782836

2 S7-1200/1500 Innovations
2.12 STOP mode in the event of errors

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 21

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 2-14: Internal reference ID for PLC and HMI

PLC_1
Internal HMI
reference ID

HMI Symbol
name

Access
mode

Connection
with PLC

009876 Motor_1 <symbolic
access>

PLC_1

000578 Valve_2 <symbolic
access>

PLC_1

PLC Symbol
name

Absolute
address

Internal PLC
reference ID

Motor_1 I0.0 000123

Valve_2 Q0.3 000138

HMI_1

NOTE The ID will be invalid if the name is changed, type is changed or tag is deleted

2.12 STOP mode in the event of errors
In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the “STOP” mode.
Due to the changed consistency check in the TIA Portal, the “STOP” mode for S7-
1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the
TIA Portal. This approach makes the S7-1200/1500 controllers more fault tolerant
to errors than their predecessors.

Advantages
There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and
easier.

Properties
Table 2-9: Responses to errors of S7-1200/1500

Error S7-1200 S7-1500

1. Cycle monitoring time
exceeded once

RUN STOP, when OB80 is
not configured

2. Cycle monitoring time
exceeded twice

STOP STOP

3. Programming errors RUN STOP, when OB121 is
not configured

Error OBs:
 OB80 “Time error interrupt” is called by the operating system when the

maximum cycle time of the controller is exceeded.
 OB121 “Programming error” is called by the operating system when an error

occurs during program execution.
For every error, in addition, an entry is automatically created in the diagnostic
buffer.

2 S7-1200/1500 Innovations
2.12 STOP mode in the event of errors

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 22

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Note For S7-1200/1500 controllers there are other programmable error OBs
(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under “Events and OBs”.

3 General Programming
3.1 Operating system and user program

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 23

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3 General Programming
3.1 Operating system and user program

SIMATIC controllers consist of operating system and user program.
 The operating system organizes all functions and sequences of the controller

that are not connected with a specific control task (e.g. handling of restart,
updating of process image, calling the user program, error handling, memory
management, etc.). The operating system is an integral part of the controller.

 The user program includes all blocks that are required for the processing of
your specific automation task. The user program is programmed with program
blocks and loaded onto the controller.

Figure 3-1: Operating system and user program

Hardware

User
program

OB
Main

Operating
system

cyclic
call Global

FCFB
Local

FC

FC

For SIMATIC controllers the user program is always executed cyclically. The
“Main” cycle OP already exists in the “Program blocks” folder after a controller was
created in STEP 7. The block is processed by the controller and recalled in an
infinite loop.

3.2 Program blocks
In STEP 7 (TIA Portal) there are all familiar block types from the previous STEP 7
versions:
 Organization blocks
 Function blocks
 Functions
 Data blocks

Experienced STEP 7 users will know their way around straight away and new
users can very easily get familiar with the programming.

Advantages
 You can give your program a good and clear structure with the different block

types.
 Due to a good and structured program you get many function units that can be

multiply reused within a project and also in other projects. These function units
then usually only differ by a different configuration (see chapter
3.2.8 Reusability of blocks).

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 24

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

 You project or your plant becomes more transparent. I.e. error states in a plant
can be more easily detected, analyzed and removed. I.e. the maintainability of
your plant becomes easier. This is also the case for errors in programming.

Recommendation
 Structure your automation task.
 Divide the entire function of your plant into individual areas and form sub-

function units. Divide these function units again into smaller units and
functions. Divide until you get functions that you can use several times with
different parameters.

 Specify the interfaces between the function units. Define the unique interfaces
for functionalities that are to be delivered by “external companies”.

All organization blocks, function blocks and functions can be programmed with the
following languages:
 Contact plan (KOP or LAD)
 Function plan (FUP or FBD)
 Structured Control Language (SCL)
 Graph (GRAPH), only S7-1500, planned for S7-1200
 Instruction list (AWL or STL), only S7-1500

3.2.1 Organization blocks (OB)

Figure 3-2: “Add new block” dialog (OB)

OBs are the interface between the operating system and the user program. They
are called by the operating system and control, e.g. the following processes:
 Startup behavior of the controller
 Cyclic program processing
 Interrupt-controlled program processing
 Error handling

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 25

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Depending on the controller a number of different OB types are available.

Properties

 OBs are called by the operating system of the controller
 Several Main OBs can be created in a program. The OBs are processed

sequentially by OB number.
Figure 3-3: Using several Main OBs

Main_1
OB1

FB

Local
FC

User program

Main_y
OB200

Main_x
OB300

FB

Local
FC

FB

Local
FC

Recommendation
 Encapsulate the different program parts which should maybe be replaceable

from controller to controller, into several Main OBs.
 Avoid the communication between the different Main OBs. They can then be

used independent from each other. If you nevertheless exchange data
between the individual main OBs, use the global DBs (see chapter 4.2 No bit
memory but global data blocks).

 Divide all program parts that belong to each other into folders and store them
for reusability in the project or global library.

Figure 3-4: Storing program parts in order in the project library

For further information, please refer to chapter 3.7 Libraries.

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 26

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Note You will find further information in the following entry:

Which organization blocks can be used in STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/58235745

3.2.2 Functions (FC)

Figure 3-5: “Add new block” dialog (FC)

FCs are blocks without cyclic data storages. This is why the values of block
parameters cannot be saved until the next call and have to be provided with actual
parameters when called.

Properties

 FCs are blocks without cyclic data storages.
 Temporary and out tags are lost after the processing of the function. They are

preassigned with an undefined value when calling the function in non-
optimized blocks, and for optimized blocks they are preassigned with “0”
(S7-1500 and S7-1200 firmware V4).

 In order to permanently save the data of an FC, the functions of the global data
blocks are available.

 FCs can have several outputs.
 The function value can be directly reused in SCL in a formula.

Recommendation
 Use the functions for continuously recurring applications that are called several

times in different locations of the user program.
 Use the option to directly reuse the function value in SCL.

<Operand> := <FC name> (parameter list)

Example
In the following example a mathematical formula is programmed in a FC. The result
of the calculation is directly declared as return value and the function value can be
directly reused.

http://support.automation.siemens.com/WW/view/en/58235745

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 27

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Table 3-1: Reusing function value

Step Instruction

1. Create an FC with the mathematical formula (circular segment) and define the
“Return” value as the result for the formula.

FC

2. Call the FC with the circular segment calculation in any block (SCL).
<Operand> := <FC name> (parameter list);

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 28

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.2.3 Function blocks (FB)

Figure 3-6: “Add new block” dialog (FB)

FBs are blocks with cyclic data storage, in which values are permanently stored.
The cyclic data storage is realized in an instance DB.
Figure 3-7: Calling a function block

Call of a function block in the
block editor

Instance DB

Properties
 FCs are blocks with cyclic data storage.
 Temporary and out tags are lost after the processing of the function. They are

preassigned with an undefined value when calling the function in non-
optimized blocks, and for optimized blocks they are preassigned with “0”
(S7-1500 and S7-1200 firmware V4).

 Static tags keep the value from cycle to cycle

Recommendation
 Use the function blocks in order to create subprograms and structure the user

program. A function block can also be called several times in different locations
of the user program. This makes programming of frequently recurring program
parts easier.

3.2.4 Instance data block

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 29

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.
Figure 3-8: Structure of the interfaces of an FB

Temp
L - Stack

Instance_DB

Input
Output
InOut

Static

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. In a volatile memory (L stack) temporary tags are stored. The
L stack is always only valid for one cycle. I.e. temporary tags have to be initialized
in each cycle.

Properties
 Instance DBs are always assigned to a FB.
 Instance DBs do not have to be created manually in the TIA Portal and are

created automatically when calling an FB.
 The structure of the instance DB is specified in the appropriate FB and can

only be changed there.

Recommendation
 Program it in a way so that the data of the instance DB can only be changed by

the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For further information, please refer to chapter 3.4 Block interfaces as data
exchange.

3.2.5 Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. I.e. if another function block is called in a function
block, it saves its data in the instance DB of the higher-level FBs.
The following figure shows an FB that uses another FB (“IEC Timer”). All data is
saved in a multi instance DB.

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 30

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-9: Multi-instances

Multi-instance DB

FB Statics
TOF_TIME

FB Parameter

FB

Switch-on
delay call

Advantages
 Reusability
 Multiple calls are possible
 Clearer program with fewer instance DBs
 Simple copying of programs
 Good options for structuring during programming

Properties
 Multi-instances are memory areas within instance DBs.

Recommendation
 Use multi-instances in order to reduce the number of instances. You can

therefore create reusable and clear user programs.

Example
If you require the time and counter function, use the “IEC Timer” blocks and the
“IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If
possible, also always use multi-instances here. This keeps the number of blocks in
the user program low.

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 31

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-10: Library of the IEC Timer

Note You will find further information in the following entry:

How do you declare the timers and counters for the S7-1500 in STEP 7
(TIA Portal) V12?
http://support.automation.siemens.com/WW/view/en/67585220

3.2.6 Global data blocks (DB)

Figure 3-11: “Add new block” dialog (DB

Variable data is located in data blocks that are available to the entire user program.

http://support.automation.siemens.com/WW/view/en/67585220

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 32

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-12: Global DB as central data memory

DB
OB

FC

FB

Local

Advantages
 Well structured memory area
 High access speed

Properties

 All blocks in the user program can access global DBs.
 The structure of the global DBs can be arbitrarily made up of all data types.
 Global DBs are either created via the program editor or according to a

previously created “user-defined PLC data type" (see chapter 3.6.3 STRUCT
data type and PLC data types).

Recommendation
 Use the global DBs when data is used in different program parts or blocks.
 Use the PLC data types in order to specify a structure for a data block. The

PLC data type can be used for any number of DBs. You can easily and
conveniently create as many DBs of the same structure and adjust them
centrally on the PLC data type (see chapter 3.6.3 STRUCT data type and PLC
data types).

Note You will find further information in the following entry:

What access types, value columns and operating options are there for the global
data blocks in STEP 7 V12?
http://support.automation.siemens.com/WW/view/en/68015631

3.2.7 Downloading without reinitialization

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

http://support.automation.siemens.com/WW/view/en/16818490

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 33

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-13: Downloading without reinitialization

Name

Tag1

Value

3.4

Tag3

Tag4

23

0

Name

Tag1

Tag2

Value

3.4

451

Tag3 23

Tag5 0

Block
in project

Name

Tag1

Tag3

Tag4

Tag5

Tag2 451Tag2

Block in
the controller

Block in
the controller

1

3

2

Execute the following steps whilst the controller is in RUN mode.
1. Enable “Downloading without reinitialization”
2. Insert tags in existing block
3. Load block into controller

Advantages
 Reloading of tags without interrupting the running process. The controller stays

in “RUN” mode.

Properties
 It is assumed that a memory reserve has been defined for block.
 Downloading without reinitialization is only possible for optimized blocks.
 The current values are not initialized and maintain the current value.
 A block with reserve requires more memory space in the controller.
 The memory reserve depends on the work memory of the controller; however it

is max. 2 MB.
 By default the memory reserve is set to 100 byte.
 The memory reserve is defined individually for every block.

Recommendation
 Define a memory reserve for blocks that are to be expanded during

commissioning (e.g. test blocks). The commissioning process is therefore not
interrupted. The blocks can be variably expanded.

Example
The following table describes how you can set the memory reserve for the
downloading without reinitializing.

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 34

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Table 3-2: Setting memory reserve

Step Instruction

1. Right-click any optimized block in the project navigator and select “Properties”.

2.

1

2

3

1. Click “Download without reinitialization”.
2. Enter the desired memory reserve for “Memory reserve”.
3. Confirm with "OK".

In the following example it is displayed how to download without reinitialization.
Table 3-3 Downloading without reinitialization

Step Instruction

1. Requirement: a memory reserve has to be set (see above)

2. Open, e.g. an optimized global DB.

3 General Programming
3.2 Program blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 35

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Step Instruction

3. Click the “Download without reinitialization” button and confirm the dialog with
“OK”

4. Add a new tag (retentive tags are also possible).

5. Download the block to the controller.

6. Result:
 Actual values of the block remain

Note Further information can be found in the online help of the TIA Portal under
“Loading block extensions without reinitialization”.

3.2.8 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages

 Blocks can be used universally in any location of the user program.
 Blocks can be used universally in different projects.
 When every block receives an independent task, a clear and well structured

user program is automatically created.
 There are clearly fewer sources of errors and is makes simple error diagnostic

possible.

Recommendation
If you want to reuse the block, please note the following recommendations:
 Always look at blocks as encapsulated functions. I.e. each block represents a

completed partial task of the entire user program.
 Use several cyclic Main OBs to group the plant parts.
 Always execute a data exchange between the blocks via its interfaces and not

via its instances (see chapter 3.4.1 Block interfaces as data exchange).
 Do not use project-specific data and avoid the following block contents:

3 General Programming
3.3 Block interface types

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 36

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

– Access to global DBs and use of individual instance DBs
– Access to tags
– Access to global constants

 Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the “Block can be used as know-how protected library element” block property.
Compile the block before the check.

Figure 3-14: Block attributes

3.3 Block interface types
FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. There are two different options for this
parameter transfer.

3.3.1 Call-by-value with In interface type

When calling the block, the value of the actual parameter is copied onto the input
parameter of the block for the In interface type. For this, additional memory is
required.
Figure 3-15: Copying of the value to the input parameter

„My_string“
value: 'test'

FC / FB
IN
value: 'test'

Properties

 Each block displays the same behavior with connected parameters
 Values are copied when calling the block

3 General Programming
3.4 Storage concept

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 37

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.3.2 Call-by-reference with InOut interface type

When calling the block the address of the actual parameter of the Input parameter
is referenced for the InOut interface type. For this, no additional memory is
required.
Figure 3-16: Referencing the value (pointer to data storage of the parameter)

FC / FB
IN/OUT
Reference to "My_string"

"My_string"
value: 'test'

Properties

 Each block displays the same behavior with connected parameters
 Actual parameters are referenced with the block call

Recommendation
 Generally use the InOut interface type for structured tags (e.g. of the ARRAY,

STRUCT, STRING, type…) in order to avoid enlarging the required data
memory unnecessarily.

3.4 Storage concept

For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The
local memory area is only available within the respective block.

3.4.1 Block interfaces as data exchange

If you are encapsulating the functions and program the data exchange between the
blocks only via the interfaces, you will clearly have advantages.

Advantages
 Program code is easier to read since there are no hidden cross accesses.
 Program can be made up modularly from ready blocks with partial tasks.
 Program is easy to expand and maintain.

Recommendation
 If possible, only use the tags locally. This is how the blocks can be used

universally and modularly.
 Use the data exchange via the block interfaces (In, Out, InOut), when tags are

used in several blocks.
 Only use the instance data blocks as local memory for the respective function

block. Other blocks must not be written into instance data blocks.

3 General Programming
3.4 Storage concept

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 38

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-17: Avoiding accesses to instance data blocks

OB

FB
Local

FC FB
Local

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.
Figure 3-18: Block interfaces for data exchange

OB

FB
Local

FC

FB
Local

3.4.2 Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (e.g. bit memory, times,
counters, etc.) and global DBs. For hardware-dependent memory areas there is the
danger that the program may not be portable to any controller because the areas
there may already be used. This is why you should use global DBs instead of
hardware-dependent memory areas.

Advantages

 User programs can be used universally and independent from the hardware.
 The user program can be structured modularly without having to define bit

memory address areas for different users.
 Optimized global DBs are clearly more powerful than the bit memory address

area that is not optimized for reasons of compatibility.

Recommendation
 Do not use any bit memory and use global DBs instead.
 Avoid hardware-dependent memory, such as, for example, clock memory or

counter. Use the IEC counter and timer in connection with multi-instances
instead (see chapter 3.2.5 Multi-instances). The IEC timers can be found under
“Instructions – Basic Instructions – Timer operations”.

3 General Programming
3.4 Storage concept

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 39

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-19: IEC Timers

3.4.3 Local memory

 Static tags
 Temporary tags

Recommendation
 Use the static tags if the tag values are required for the next cycle.
 Use the temporary tags if tags are only required for the current cycle as

intermediate memory. The access time for temporary tags is shorter than for
static ones.

Note Optimized blocks: Temporary tags are initialized in any block call with the
value “0” (S7-1500 und S7-1200 Firmware V4).
Non-optimized blocks: Temporary tags are undefined for each call of the block.

3 General Programming
3.4 Storage concept

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 40

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.4.4 Access speed of memory areas

STEP 7 offers different options of memory accesses. For system-related reasons
there are faster and slower accesses to different memory areas.
Figure 3-20: Different memory accesses

Access speed fast intermediate slow

1

Temporary tags

1
Non-retain tags

1

Non-structured
elementary data type FC

parameter

2

Accesses to checks for at
runtime require

(register, indirect and
indirect DB accesses)

3
Access to non-optimized

blocks

Indexed accesses with
runtime tindex 4

5

5

5

6

Access to optimized DBs

Retentive tags

Copying between optimized
and non-optimized blocks

2

Fastest accesses in the S7-1200/1500 in descending order
1. Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive

static tags
2. Optimized blocks whose accesses for compiling are known:

– Retentive FB tags
– Optimized global DBs

3. Access to non-optimized blocks
4. Indexed accesses with index that was calculated at runtime (e.g. Motor [i])
5. Accesses that require checks at runtime

– Accesses to DBs that are created at runtime or which were opened
indirectly (e.g. OPN DB[i])

– Register access or indirect memory access
6. Copying of structures between optimized and non-optimized blocks (apart from

Array of Bytes)

3 General Programming
3.5 Retentivity

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 41

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.5 Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller’s work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different
sizes.
Table 3-4: Retentive memory for S7-1200/1500

Controller
Usable retentive memory for bit memory,

times, counters, DBs and technology
objects

CPU 1215C 10 Kbytes
CPU 1215C 10 Kbytes
CPU 1214C 10 Kbytes
CPU 1215C 10 Kbytes

CPU 1511-1 PN 88 Kbytes
CPU 1513-1 PN 88 Kbytes
CPU 1516-3 PN/DP 472 Kbytes

Table 3-5: Differences of S7-1200 and S7-1500

S7-1200 S7-1500

Retentivity can only be set for bit memory Retentivity can be set for bit memory, times
and counters

Advantages
 Retentive data maintain their value when the controller goes to STOP and back

to RUN or in the event of a power failure and a restart of the controller.

Properties
For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.
The retentive data can be deleted with the actions "memory reset" or "Reset to
factory settings" via:
 Operating switch on the controller (MRES)
 Display of the controller
 Online via STEP 7 (TIA Portal)

Recommendation
 Avoid the setting “Set in IDB”. Always set the retentive data in the function

block and not in the instance data block.
The “Set in IDB” setting increases the processing time of the program
sequence. Always either select “Non-retain” or “Retain” for the interfaces in the
FB.

3 General Programming
3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 42

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-21: Program editor (Functions block interfaces)

Example
The setting of the retentive data is performed in the tables of the PLC data types,
function blocks and data blocks.
Figure 3-22: Setting of the retentive tags in the table of PLC data types

Retentivity can be set from
address 0 onward!

e.g. from MB0, T0 or C0

3.6 Symbolic addressing

3.6.1 Symbolic instead of absolute addressing

The TIA Portal is optimized for symbolic programming. This results in many
advantages. Due to the symbolic addressing you can program without having to
pay attention to the internal data storage. The controller handles where the best
possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.

Advantages

 Easier to read programs through symbolic tag names
 Automatic update of tag names at all usage locations in the user program
 Memory storage of the program data does not have to be manually managed

(absolute addressing)
 Powerful data access

3 General Programming
3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 43

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

 No manual optimization for performance or program size reasons required
 IntelliSense for fast symbol input
 Fewer program errors due to type safety (validity of data types is checked for

all accesses)

Recommendation

 “Think” symbolically. Enter the “descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater_room_4, etc. This is how a
generated program can easily be read without requiring many comments.

 Give all the tags used a direct symbolic name and define it afterwards with a
right-click.

Example
Table 3-6: Example for creating symbolic tags

Step Instruction

1. Open the program editor and open any block.

2. Enter a symbolic name directly at the input of an instruction.

3. Right-click next to the block and select “Define tag…” in the context menu.

3 General Programming
3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 44

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Step Instruction

4. Define the tag.

There is an elegant method to save time, if you want to define several tags in a
network. Assign all tag names first of all. Then define all tags at the same time with
the dialog of step 4.

Note You will find further information in the following entry:

Why is universal definition and utilization of symbols in STEP 7 (TIA Portal) V12
obligatory for the S7-1500?
http://support.automation.siemens.com/WW/view/en/67598995

3.6.2 ARRAY data type and indirect field accesses

The ARRAY data type is suitable, for example, for the storage of recipes, material
tracking in a queue, cyclic process acquisition, protocols, etc.
Figure 3-23: ARRAY with 9 elements of the Integer (INT) data type

You can indirectly access individual elements in the ARRAY with a runtime tag
(array [“index”]).

http://support.automation.siemens.com/WW/view/en/67598995

3 General Programming
3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 45

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-24: Indirect field access

SCL:

0123456789

KOP / FUP:

Advantages
 Simple access since the data type of the ARRAY elements is irrelevant for the

access.
 No complicated pointer creation required
 Fast creation and expansion possible
 Useable in all programming languages

Properties
 Structured data type
 Data structure made of fixed number of elements of the same data type
 ARRAYs can be created nested or also multi-dimensional
 Possible indirect access with runtime tag with dynamic index calculation at

runtime

Recommendation
 Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This

makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

 As run tag use the INT data type as temporary tag for highest performance.
 Use the “MOVE_BLK” instruction to copy parts of an ARRAY into another one.
 Use the “GET_ERR_ID” instruction to catch access errors within the Array.

Note You will find further information in the following entry:

How do you implement an array access with an S7-1500 with variable index?
http://support.automation.siemens.com/WW/view/en/67598676

http://support.automation.siemens.com/WW/view/en/67598676

3 General Programming
3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 46

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.6.3 STRUCT data type and PLC data types

The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective
block.
Figure 3-25: Structure with elements with different data types

In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically
updated.
PLC data types are declared in the “PLC data types” folder in the project navigation
before being used.
Figure 3-26: PLC data types

Advantages
 A change in a PLC data type is automatically updated in all usage locations in

the user program.

Recommendation
 Use the PLC data types to summarize several associated data, such as, e.g.

frames or motor data (setpoint, speed, rotational direction, temperature, etc.)
 Always use PLC data types instead of structures for the multiple uses in the

user program.
 Use the PLC data types for structuring into data blocks.

3 General Programming
3.6 Symbolic addressing

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 47

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Note You will find further information in the following entries:

How do you initialize structures into optimized memory areas for the S7-1500
STEP 7 (TIA Portal)?
http://support.automation.siemens.com/WW/view/en/78678761

How do you create a PLC data type for an S7-1500 controller?
http://support.automation.siemens.com/WW/view/en/67599090

In STEP 7 (TIA Portal) V12, how do you apply your own data types (UDT)?
http://support.automation.siemens.com/WW/view/en/67582844

Why should whole structures instead of many single components be transferred
for the S7-1500 when a block is called?
http://support.automation.siemens.com/WW/view/en/67585079

3.6.4 Slice access

For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. In the figure below
displays the symbolic bit, byte and word accesses to the operands.
Figure 3-27: Slice access

Advantages

 High programming efficiency
 No additional definition in the tag declaration required
 Simple access (e.g. control bits)

Recommendation

 Use the slice access rather than AT construct via accessing certain data areas
in operands.

Note You will find further information in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
http://support.automation.siemens.com/WW/view/en/57374718

http://support.automation.siemens.com/WW/view/en/78678761
http://support.automation.siemens.com/WW/view/en/67599090
http://support.automation.siemens.com/WW/view/en/67582844
http://support.automation.siemens.com/WW/view/en/67585079
http://support.automation.siemens.com/WW/view/en/57374718

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 48

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.7 Libraries
With the TIA Portal you can create independent libraries from different project
elements that can be easily reused.

Advantages

 Simple storage for the data configured in the TIA Portal:
– Complete devices (controller, HMI, drive, etc.)
– Controller programs, blocks, tags, monitoring tables
– HMI image, HMI tags, scripts, etc.

 Cross-project exchange via libraries
 Central update function of library elements
 Versioning library elements
 Fewer error sources when using control blocks through system-supported

consideration of dependencies

Recommendations

 Create the master copies for easy reusability of blocks, hardware
configurations, HMI images, etc.

 Create the types for the system-supported reusability of library elements:
– Versioning of blocks
– Central update function of all usage locations

 Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

3.7.1 Types of libraries and library elements

Generally there are two different types of libraries:
 "Project library"
 "Global library".

The content consists of two storage types each:
 "Types"
 "Master Copies"

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 49

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Figure 3-28: Libraries in the TIA Portal

1

2

3

4

 (1) "Project library"
– Integrated in the project and managed with the project
– Allows the reusability within the project

 (2) "Global library"
– Independent library
– Use within several projects possible

A library includes two different types of storage of library elements:
 (3) "Master copies"

– Copy of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

– Copies are not connected with the elements in the project.
– Master copies can also be made up several configuration elements.

 (4) "Types"
– Types are connected with your usage locations in the project. When types

are changed, the usage locations in the project can be updated
automatically.

– Supported types are controller blocks (FCs, FBs), PLC data types, HMI
images, HMI faceplates, HMI UDT, scripts).

– Subordinate elements are automatically typified.
– Types are versioned: Changes can be made by creating a newer version.
– There can only be one version of a used type within a controller.

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 50

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.7.2 Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.
You can use types from the library in the user program. This offers the following
advantages:

Advantages

 Central update of all usage locations in the project
 Unwanted modifications of usage locations of types are not possible.
 The system guarantees that types always remain consistent by hindering

unwanted delete operations.
 If a type is deleted, all usage locations in the user program are deleted.

Properties
By using types you can make the changes centrally and update them in the
complete project.
Figure 3-29: Typifying with user libraries

User libraryProject

Typ V1

Typ V2

Use V2

Use V2

Use V2

Central update to
newer version

Master copy

Update

Use

Use

Use

without
typification

with typification

 Types are always marked in the project for better identification

3.7.3 Differences for typifiable objects for controller and HMI

There are system-related differences between the typifiable objects for controllers
and HMI:
Table 3-7: Differences of types for controller and HMI

Controller HMI

Subordinate control elements are typified. Subordinate HMI elements are not typified.

Subordinate control elements are
instanced.

Subordinate HMI elements are not
instanced.

Control elements are edited in a test
environment.

HMI images and HMI scripts are edited in a
test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 51

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Further information on the handling of libraries can be found in the following
example.

3.7.4 Versioning of a block

Example
The following example shows you how the basic functions of the libraries are used
with types.
Table 3-8: Creating a type

Step Instruction

1. Create a new PLC data type with “Add new data type” and create some tags.
Later on this is the subordinate type.

2. Create a new function block with “Add new Block”. This is the higher-level type.

3. Define an input tag of the data type you have created. The PLC data type is
therefore subordinate to the function block.

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 52

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Step Instruction

4. Drag the function block via drag & drop into the “Types” folder in the project
library.

5. Optionally assign: Type name, version, author and comment and confirm the
dialog with “OK”.

6. - The subordinate PLC data type is automatically also stored in the library.

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 53

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Table 3-9: Changing a type

Step Instruction

1. Right-click the block in the “Project library” and select “Edit type”

2. Select which controller is to be used as test environment and confirm the dialog
with “OK”.

If several controllers in the project use the selected block, a controller has to be
selected as test environment.

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 54

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Step Instruction

3. The library view opens. A new version of the block has been created and is now
marked with “in test”.

4. Add another input tag.

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with
the following steps.

5. Click the “Release version” button.

3 General Programming
3.7 Libraries

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 55

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Step Instruction

6. A dialog box opens. Here you can store a version-related comment. Confirm the
dialog with “OK”.

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: “Update instances in the
project”.
If older versions of the element are no longer required you can delete them by
clicking “Delete unused type versions from library”

7. Close the library view with “Close library view”

3 General Programming
3.8 Process interrupts

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 56

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.8 Process interrupts

The processing of the user program can be influenced by events such as process
interrupts. When you need a fast response of the controller to hardware events
(e.g. a rising edge of a channel of a digital input module), configure a process
interrupt. For each process interrupt a separate OB can be programmed. This OB
is called by the operating system of the controller in the event of a process
interrupt. The cycle of the controller is therefore interrupted and continued after
processing the process interrupt.
Figure 3-30: Process interrupt is calling OB

e.g. rising
edge E0.0

e.g. falling
edge E6.1

Hardware
interrupt

OB40

Hardware
interrupt_1

OBxxx

Event

In the following figure you can see the configuration of a “hardware interrupt” in the
hardware configuration of a digital input module.
Figure 3-31: Configuring hardware interrupt

Advantages
 Fast system response to events (rising, falling edge, etc.)
 Each event can start a separate OB.

3 General Programming
3.8 Process interrupts

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 57

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Recommendation

 Use the process interrupts in order to program fast responses to hardware
events.

 If the system responses are not fast enough despite programming a process
interrupt, you can still accelerate the responses. Set as small an “Input delay”
as possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-32: Setting input delay

3 General Programming
3.9 Other performance recommendations

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 58

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.9 Other performance recommendations

Here you can find some general recommendations that enable faster program
processing of the controller.

Recommendation
Note the following recommendations for programming S7-1200/1500 controllers in
order to achieve a high performance:
 LAD/FBD: Disable “generate ENO” for blocks. This avoids tests at runtime.
 STL: Do not use registers since address and data registers are only emulated

for compatibility reasons by S7-1500.
 Disable the expanded test function after commissioning.

Note You will find further information in the following entry:

How do you disable the ENO enable output of an instruction?
http://support.automation.siemens.com/WW/view/en/67797146

http://support.automation.siemens.com/WW/view/en/67797146

3 General Programming
3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 59

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.10 SCL programming language: Tips and tricks

3.10.1 Using call templates

Many instructions of the programming languages offer a call template with a list of
existing formal parameters.

Example
Table 3-10: Easy expanding of the call template

Step Instruction

1. Drag an instruction from the library into the SCL program. The editor shows the
complete call template.

2. Now fill in the required parameter and finish the entry with the “Return” button.

3. The editor automatically reduces the call template.

4. If you want to edit the complete call later on again, proceed as follows.
Click into the call at any place and then click “CTRL+SHIFT+SPACE”. You are
now in the Call Template mode. The editor expands the call again. You can
navigate with the “TAB” button through the parameters.

5. Note: In the “Call Template” mode the writing is in italics.

3 General Programming
3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 60

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.10.2 What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

3.10.3 Drag & drop with entire tag names

In the SCL editor you can also use drag & drop functions. For tag names you are
additionally supported. If you want to replace one tag for another, proceed as
follows.
Table 3-11: Drag & drop with tags in SCL

Step Instruction

1. Drag the tag via drag & drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.

> hold for 1 second

The complete tag is replaced.

3 General Programming
3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 61

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.10.4 Efficiently inserting CASE instruction

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE
block condition. After executing the CASE block the instruction is finished. This
allows you, for example, to check frequently required value ranges more
specifically and easily.

Example
CASE #myVar OF

5:

 FC5(#myParam);

10,12:

 FC10(#myParam);

15:

 FC15(#myParam);

0..20:

 FCGlobal(#myParam);

// FCGlobal is never called for the values 5, 10, 12 or 15!

 ELSE

END_CASE;

3.10.5 No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.
With the EXIT instruction a loop can be interrupted at any time.

Advantages

 The compiler can optimize the program better, since it does not know the
number of iterations.

Example
FOR #var := #lower TO #upper DO

 #var := #var + 1; // no effect, Compiler -> Warning

END_FOR;

3 General Programming
3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 62

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

3.10.6 FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional “BY” key word in the loop head.

Example
FOR #var := #upper TO #lower BY -2 DO

END_FOR;

If you are defining “BY” as “-2”, as in the example, the counter is lowered by 2 in
every iteration. If you omit “BY”, the default setting for “BY” is 1

3.10.7 Simple creating of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Example
Table 3-12: Easy creation of instances

Step Instruction

1. Give the block name a: followed by a "." (dot). The automatic compilation now
shows you the following.

2. On the top you can see the already existing instances. In addition, you can
directly create a new single instance or multi-instance.
Use the shortcuts "s" or "m" to go directly to the respective entries in the
automatic compilation window.

3.10.8 Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called “overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

Example
Time_difference := Time stamp_1 – Time stamp_2;

3 General Programming
3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 63

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

The following table summarizes the overloaded operators and which operation is
behind it:
Table 3-13: Overloaded operands for SCL

Overloaded operand Operation

ltime + time T_ADD LTime
ltime + time T_SUB LTime
ltime + lint T_ADD LTime
ltime + lint T_SUB LTime
time + time T_ADD Time
time + time T_SUB Time
time + dint T_ADD Time
time + dint T_SUB Time
ldt + ltime T_ADD LDT / LTime
ldt + ltime T_ADD LDT / LTime
ldt + time T_ADD LDT / Time
ldt + time T_SUB LDT / Time
dtl + ltime T_ADD DTL / LTime
dtl + ltime T_SUB DTL / LTime
dtl + time T_ADD DTL / Time
dtl + time T_SUB DTL / Time
ltod + ltime T_ADD LTOD / LTime
ltod + ltime T_SUB LTOD / LTime
ltod + lint T_ADD LTOD / LTime
ltod + lint T_SUB LTOD / LTime
ltod + time T_ADD LTOD / Time
ltod + time T_SUB LTOD / Time
tod + time T_ADD TOD / Time
tod + time T_SUB TOD / Time
tod + dint T_ADD TOD / Time
tod + dint T_SUB TOD / Time
dt + time T_ADD DT / Time
dt + time T_SUB DT / Time
ldt – ldt T_DIFF LDT
dtl – dtl T_DIFF DTL
dt – dt T_DIFF DT
date – date T_DIFF DATE
ltod – ltod T_DIFF LTOD
date + ltod T_COMBINE DATE / LTOD
date + tod T_COMBINE DATE / TOD

4 Hardware-Independent Programming
4.1 Data types of S7-300/400 and S7-1200/1500

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 64

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

4 Hardware-Independent Programming
To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

4.1 Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation
 Only use the data types that are supported by the controllers on which the

program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

Description S7 -
300/400

S7-1200 S7-1500

Bit data types BOOL
 BYTE
 WORD
 DWORD

 LWORD

Character type CHAR (8 bit)

Numerical data
types

 INT (16 bit)
 DINT (32 bit)
 REAL (32 bit)

 SINT (8 bit)
 USINT (8 bit)
 UINT (16 bit)
 UDINT (32 bit)
 LREAL (64 bit)

 LINT (64 bit)
 ULINT (64 bit)

Time types TIME
 DATE
 TIME_OF_DAY

 S5TIME

 LTIME
 L_TIME_OF_DAY

Table 4-2: Data groups that are made up of other data types

Description S7 -
300/400

S7-1200 S7-1500

Time types DT
(DATE_AND_TIME)

 DTL

4 Hardware-Independent Programming
4.2 No bit memory but global data blocks

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 65

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

Description S7 -
300/400

S7-1200 S7-1500

 LDT
(L_DATE_AND_TIME)

Character type STRING

Field ARRAY 1)

Structure STRUCT
1) For S7-1500 the ARRAY data type is limited to 64 bit instead of 16 bit

Table 4-3: Parameter types for formal parameters that are transferred between blocks

Description S7 -
300/400

S7-1200 S7-1500

Pointer POINTER
 ANY

1)

 VARIANT

Blocks TIMER
 COUNTER

2)

 BLOCK_FB
 BLOCK_FC

 BLOCK_DB
 BLOCK_SDB

 VOID

PLC data types PLC Data Type
1) For optimized accesses, only symbolic addressing is possible
2) For S7-1200/1500 the TIMER and COUNTER data type is represented by
IEC_TIMER and IEC_Counter.

4.2 No bit memory but global data blocks

Advantages

 Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation

 The handling with bit memory is problematic, since every controller has a bit
memory address area with a different size. Do not use bit memory for the
programming but always global data blocks. This is how the program can
always be used universally.

4 Hardware-Independent Programming
4.3 Programming of "clock bits"

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 66

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

4.3 Programming of "clock bits"

Recommendation
For the programming of clock memory bits, the hardware configuration always has
to be correct.
Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.

Example
The programmed block has the following functions. A desired frequency is
specified. The “Q” output is a Boolean value that toggles in the desired frequency.
The “Countdown” output outputs the remaining time of the current state of “Q”.
If the desired frequency is smaller or equal 0.0, then the output Q = FALSE and
Countdown = 0.0.

Period: 2 seconds

FB

Frequency [Real]

Q [Bool]

Countdown [Time]

0.5

T#0S_703MS

TRUE

Here you can find the example code (SCL) for the function block:

FUNCTION_BLOCK "Frequency"

{ S7_Optimized_Access := 'TRUE' }

VERSION : 0.1

 VAR_INPUT

 Frequency : Real; // Input in Hz

 END_VAR

 VAR_OUTPUT

 Q : Bool;

 Countdown : Time;

 END_VAR

 VAR

 TOF_on {OriginalPartName := 'IEC_TIMER'; VersionGUID :=
'b68d17d6-3fcc-4468-818a-b36d847990bb'} : TOF_TIME;

 TOF_off {OriginalPartName := 'IEC_TIMER'; VersionGUID
:= 'b68d17d6-3fcc-4468-818a-b36d847990bb'} : TOF_TIME;

 Frequency_mem : Real;

 Time_base : Time;

 END_VAR

4 Hardware-Independent Programming
4.3 Programming of "clock bits"

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 67

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

 IF #Frequency <= 0.0 THEN // If input is <= 0.0 >>
Frequency block is off

 #Q:= FALSE;

 #Countdown:= t#0s;

 ELSE

 IF #Frequency_mem <> #Frequency THEN // apply frequency one
time

 #Time_base:= t#1000s / TRUNC(#Frequency*2000); //
calculate Time

 #Frequency_mem := #Frequency;

 END_IF;

 //TOF_off expired >> Start again

 #TOF_on(IN:= NOT #TOF_off.Q, PT:=#Time_base);

 #Countdown:= #Time_base - #TOF_on.ET;

 #TOF_off(IN:= #TOF_on.Q, PT:=#Time_base);

 IF #Countdown=t#0s THEN

 #Countdown:= #Time_base - #TOF_off.ET;

 END_IF;

 #Q := #TOF_on.Q;

 END_IF;

END_FUNCTION_BLOCK

5 The Most Important Recommendations

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 68

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

5 The Most Important Recommendations

 Use optimized blocks
– Chapter 2.5 Optimized blocks

 Structuring the program clearly and well
– Chapter 3.2 Organization blocks (OB)

 Inserting instructions as multi-instance (TON, TOF ..)
– Chapter 3.2.5 Multi-instances

 Reusable programming of blocks
– Chapter 3.2.8 Reusability of blocks

 Symbolic programming
– Chapter 3.6 Symbolic addressing

 When handling data, work with ARRAY
– Chapter 3.6.2 ARRAY data type and indirect field accesses

 Creating PLC data types
– Chapter 3.6.3 STRUCT data type and PLC data types

 Using libraries for storing program elements
– Chapter 3.7 Libraries

 No memory bits but global data blocks
– Chapter 4.2 No bit memory but global data blocks

6 Related Literature

Programming Guideline for S7-1200/1500
V1.1, Entry ID: 81318674 69

C
op

yr
ig

ht
Si

em
en

s
AG

20
13

Al
lr

ig
ht

s
re

se
rv

ed

6 Related Literature

Table 6-1

Topic Title

\1\ Siemens Industry Online Support http://support.automation.siemens.com
\2\ Download page of the entry http://support.automation.siemens.com/WW

/view/en/81318674
\3\ TIA Portal - An Overview of the Most

Important Documents and Links
http://support.automation.siemens.com/WW
/view/en/65601780

\4\ STEP 7 (TIA Portal) manuals http://support.automation.siemens.com/WW
/view/en/29156492/133300

\5\ S7-1200 Manuals http://support.automation.siemens.com/WW
/view/en/34612486/133300

\6\ S7-1500 Manuals http://support.automation.siemens.com/WW
/view/en/56926743/133300

\7\ S7-1200 Getting Started http://support.automation.siemens.com/WW
/view/en/39644875

\8\ S7-1500 Getting Started http://support.automation.siemens.com/WW
/view/en/78027451

7 History

Table 7-1

Version Date Modifications

V1.0 09/2013 First version
V1.1 10/2013 Corrections in the following chapters:

2.5.3 Best possible data storage in the processor on S7-1500
2.11 Internal reference ID for controller and HMI tags
3.2.2 Functions (FC)
3.2.3 Function blocks (FB)
3.4.3 Local memory

http://support.automation.siemens.com/
http://support.automation.siemens.com/WW/view/de/81318674
http://support.automation.siemens.com/WW/view/de/81318674
http://support.automation.siemens.com/WW/view/en/65601780
http://support.automation.siemens.com/WW/view/en/65601780
http://support.automation.siemens.com/WW/view/en/29156492/133300
http://support.automation.siemens.com/WW/view/en/29156492/133300
http://support.automation.siemens.com/WW/view/en/34612486/133300
http://support.automation.siemens.com/WW/view/en/34612486/133300
http://support.automation.siemens.com/WW/view/en/56926743/133300
http://support.automation.siemens.com/WW/view/en/56926743/133300
http://support.automation.siemens.com/WW/view/en/39644875
http://support.automation.siemens.com/WW/view/en/39644875
http://support.automation.siemens.com/WW/view/en/78027451
http://support.automation.siemens.com/WW/view/en/78027451

	Programming Guideline for S7-1200/S7-1500
	Table of Contents
	1 Preface
	2 S7-1200/1500 Innovations
	2.1 Introduction
	2.2 Programming languages
	2.3 Optimized machine code
	2.4 Block creation
	2.5 Optimized blocks
	2.5.1 S7-1200: Setup of optimized blocks
	2.5.2 S7-1500: Setup of optimized blocks
	2.5.3 Best possible data storage in the processor on S7-1500

	2.6 Block sizes
	2.7 New data types for S7-1200/1500
	2.7.1 Elementary data types
	2.7.2 Date_Time_Long data type
	2.7.3 VARIANT data type

	2.8 New CALCULATE instruction
	2.9 Symbolic and comments
	2.10 System constants
	2.11 Internal reference ID for controller and HMI tags
	2.12 STOP mode in the event of errors

	3 General Programming
	3.1 Operating system and user program
	3.2 Program blocks
	3.2.1 Organization blocks (OB)
	3.2.2 Functions (FC)
	3.2.3 Function blocks (FB)
	3.2.4 Instance data block
	3.2.5 Multi-instances
	3.2.6 Global data blocks (DB)
	3.2.7 Downloading without reinitialization
	3.2.8 Reusability of blocks

	3.3 Block interface types
	3.3.1 Call-by-value with In interface type
	3.3.2 Call-by-reference with InOut interface type

	3.4 Storage concept
	3.4.1 Block interfaces as data exchange
	3.4.2 Global memory
	3.4.3 Local memory
	3.4.4 Access speed of memory areas

	3.5 Retentivity
	3.6 Symbolic addressing
	3.6.1 Symbolic instead of absolute addressing
	3.6.2 ARRAY data type and indirect field accesses
	3.6.3 STRUCT data type and PLC data types
	3.6.4 Slice access

	3.7 Libraries
	3.7.1 Types of libraries and library elements
	3.7.2 Type concept
	3.7.3 Differences for typifiable objects for controller and HMI
	3.7.4 Versioning of a block

	3.8 Process interrupts
	3.9 Other performance recommendations
	3.10 SCL programming language: Tips and tricks
	3.10.1 Using call templates
	3.10.2 What instruction parameters are mandatory?
	3.10.3 Drag & drop with entire tag names
	3.10.4 Efficiently inserting CASE instruction
	3.10.5 No manipulation of loop counters for FOR loop
	3.10.6 FOR loop backwards
	3.10.7 Simple creating of instances for calls
	3.10.8 Handling of time tags

	4 Hardware-Independent Programming
	4.1 Data types of S7-300/400 and S7-1200/1500
	4.2 No bit memory but global data blocks
	4.3 Programming of "clock bits"

	5 The Most Important Recommendations
	6 Related Literature
	7 History

